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Deep and Structured Robust Information
Theoretic Learning for Image Analysis
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Abstract— This paper presents a robust information
theoretic (RIT) model to reduce the uncertainties, i.e., missing
and noisy labels, in general discriminative data representation
tasks. The fundamental pursuit of our model is to simultaneously
learn a transformation function and a discriminative classifier
that maximize the mutual information of data and their labels
in the latent space. In this general paradigm, we, respectively,
discuss three types of the RIT implementations with linear
subspace embedding, deep transformation, and structured
sparse learning. In practice, the RIT and deep RIT are exploited
to solve the image categorization task whose performances will
be verified on various benchmark data sets. The structured
sparse RIT is further applied to a medical image analysis task
for brain magnetic resonance image segmentation that allows
group-level feature selections on the brain tissues.

Index Terms— Data embedding, mutual information, deep
learning, structured-sparse learning, image classification, brain
MRI segmentation.

I. INTRODUCTION

DATA transformation is perhaps the most prevalent and
effective approach to be adopted when dealing with

real-world image of high dimensionality. Transforming high-
dimensional image into a latent space is plausible due to its
two prominent advantages in data compression and feature
learning. In this paper, we will focus on the discriminative
data transformation approaches that incorporate labels into the
learning phase. While this task-driven feature learning topic
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has been discussed in some previous works, there are three
important issues that are hardly addressed, or at least not
simultaneously considered.

First, in typical embedding framework, the representation
and classification functions are trained sequentially. Such
training procedures convey no classifier information into the
feature learning part. It makes much sense if one can train the
classifier and transformation simultaneously to encourage the
most suitable features for a particular task. Secondly, for real
world problems, the acquisition of labels are very expensive. In
cases of insufficient labels, the discriminative learning results
cannot capture the whole structures of the dataset. Thirdly,
even though plenty of labeled data are available, in some cases,
their labels are not definitely reliable. The noisy labels may
potentially cause bias in both the features and the classifiers.

To address the aforementioned three challenges, in this
paper, we propose a robust information theoretic embed-
ding (RIT) algorithm by exploiting the mutual information
as the discriminative criteria. Different from previous works,
it simultaneously learns an transformation function and a
probabilistic classifier to classify the points in the latent space.
The incorporated probabilistic classifier, i.e. a multinomial
logistic regression [1] (a.k.a. soft-max function), does not only
encourage the class margins but also defines the probability
density function (PDF). Such well-defined PDF facilitate the
calculations of the conditional entropy [2] in the latent space
that is helpful to detect noisy labels.

The aforementioned RIT learning framework provides a
general paradigm for feature learning. It seamlessly works
with different data transformation functions to address diverse
machine learning tasks. In this paper, as most subspace mod-
els, we first consider the most intuitive and basic implementa-
tion of RIT with the linear transformation. A toy illustration of
this linear RIT model and its corresponding robust embedding
results are provided in Fig.1. Apparently, when there are
unsupervised and noisy labeled samples, RIT significantly
outperforms other methods from both the visualization effects
and quantitative evaluations. In addition to this basic version,
two other types of sophisticated data transforming strategies
will be also considered in the RIT paradigm.

In the first extension, the deep learning (DL) concept [3] is
incorporated into the RIT framework. Unlike linear subspace
model, DL performs nonlinear transformation on the raw
data by a deep neural network. The advantages of deep
RIT are mainly concluded as two points. First, it adopts the
deep structure to hierarchically transform information from
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Fig. 1. The embedding results of the faces from three categories in Yale-B dataset. Different colors represent different classes. The left panel are the
embedding results for data that are all correctly supervised and the right panel are embedding results with missing labels and incorrect labels. The last figure
in each panel quantitatively evaluates the class separability in the embedding space by calculating both the mutual information and the Fisher criteria. For
embedding results in the right panel, we use the semi-supervised version of the algorithm if it can be extended with a Laplacian regularization. The background
colors represent the conditional entropy for each point in a 2D space. To calculate the conditional entropy for other embedding methods, we first project the
data into the latent space and then fit a multinomial logistic regression in the latent space.

layer to layer that is proven to be more effective than the
shallow functions. Besides, deep RIT takes the advantage
the information theoretic quantity as the learning objective,
which could potentially reduce the label uncertainties in the
training set. The performances of this deep RIT model will be
verified on some image datasets, e.g. ImageNet [4] for image
categorization.

In the second extension, we enhance the robustness of
RIT by introducing the prevalent structured sparse norms
into it. Structured sparse norm does not encourage entry-
level sparseness as conventional �1-type sparse problems.
Instead, it enhances the sparsity on a group of variables.
Such plausible mechanism allows RIT to select more rea-
sonable feature groups in the subspace that sheds light
on feature learning sides. In a nutshell, the structured
sparse RIT (SS-RIT) exhibits two significant advantages:
1) employing the information theoretic approaches to reduce
the uncertainties among labels and 2) incorporating struc-
tured sparsity-induced norms for group-level feature learning.
We will apply the SS-RIT to a challenging task of brain
magnetic resonance image (MRI) segmentation where both
label and feature uncertainty occur.

In sum, the contributions of this paper are mainly summa-
rized as two-folds:
• We present an information theoretic learning framework

that is able to conduct feature learning and classification
jointly. The RIT model is robust to the uncertainties in
the training data and could achieve reliable performances
even though with missing and noisy labels.

• The proposed RIT is a flexible feature transformation
framework that seamlessly works with different types of
feature transformations, e.g. deep and structured learning,
to cope with diverse practical problems.

The remaining of the paper is organized as follows:
Section II reviews related works on discriminative feature
learning. The proposed RIT learning framework is introduced
in Section III and its detailed implementations with vari-
ous feature learning functions are discussed in Section IV.
Section V evaluates the performances linear RIT, Deep RIT
and sparse structured RIT on different tasks. The paper is
concluded in Section VI.

II. RELATED WORKS

Subspace models are widely used in the machine learning
field for data representation. Statistic methods, such as
Principle Component Analysis (PCA) [5] , Linear Discrim-
inant Analysis (LDA) [6], Canonical Correlation Analy-
sis (CCA) [7] are early attempts. Manifold learning [8], [9]
and its variants [10], [11] find projections that optimally
preserves the graph distances of high dimensional data. The
graph structure enables the exploration of various nonlinear
graph-based similarities, e.g. commute time [11], to describe
the intrinsic relationship among data. Marginal Fisher Analy-
sis (MFA) is the discriminative manifold learning method that
extends Fisher discriminant criteria into a manifold space [9].
Discriminative Locality Alignment (DLA) [12] combines the
locality similarity metric and the marginal sample weighting
strategy. DKA more reasonably utilizes the local information
of data and thus leads to more robust performance. Generalized
Multiview Analysis (GMA) [13] seeks an optimal subspace
by solving a quadratic constrained quadratic program (QCQP)
over different subspaces (e.g. PCA, LDA, MFA). The promises
of these generalized models have been witnessed in a number
of benchmark datasets.

Unlike subspace based method, dictionary-based models
do not impose orthogonal restrictions on the projections,
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allowing more flexibility to adapt the representation to the
data. Within the dictionary learning framework, some priors
can be placed on the dictionary to encourage the desired
data structure. Widely used priors include discriminative struc-
ture [14], sparse [15]–[17] and structured sparse [18]. In [19],
discriminative dictionaries are generated by incorporating a
discriminative function into the task-driven framework.

Deep learning is an emerging technique which has wide
influences in the big-data industries [3], [20], [21]. It tackles
a fundamental problem in machine learning: how to generate
informative features in a task-driven manner. While the deep
learning has been extensively used to reduce the noises in
the raw data, less efforts have been devoted to handle the
noises in the labels. In fact, label uncertainty is meanwhile a
critical problem that needs careful considerations. Different
from existing works, in this paper, we introduce a new
learning objective into the typical DL framework from a novel
perspective of information theory.

In the community of machine learning, the information the-
oretic quantities have been used for data representation [22],
clustering [23] and feature selection [24]. For data embedding,
Mutual Information Maximization (MIM) has been proposed
to extract features in a discriminative manner [25]. Its for-
mulation resembles the Fisher discrimination but defines the
discriminant via information quantity. Although both [25] and
our RIT model share one common thing in utilizing mutual
information as the discriminative criteria, the two algorithms
are quite different. In MIM, all the probability density function
are estimated via the nonparametric way. Therefore, MIM is
a fully supervised embedding method and is sensitive to the
quality of labels. RIT provides a more flexible way to interpret
the probabilities with a probabilistic classifier which can be
easily extended to semi-supervised version and is robust to
noises in the given labels. Our RIT model was inspired by the
RIM work in [23] on information theoretic function design.
However, RIM just considers discriminative clustering in the
original data space without any feature learning mechanism
involved. The major concern of RIT is about feature learning.
It considers generating more reasonable feature representations
to enhance the discriminative structure in a transformed space.
In detail, we will consider three data transformation functions
in this work including subspace, deep and structured sparse
transformations.

III. ROBUST INFORMATION THEORETIC LEARNING

In this part, we will introduce the robust information
theoretic embedding (RIT) model and its solutions.

A. Model

For a flexible description, we adopt a probabilistic
framework to address the task of discriminative learning.
In probability theory and information theory, the mutual infor-
mation is a quantity that measures the mutual dependence of
the two random variables. It measures how much knowing
one of these variables reduces uncertainty about the other.
Therefore, in our formulation, the mutual information serves as
the basic discriminant criteria to measure the class separability
in the transformed space.

For the ease of illustration, we define xi ∈ R
n as the original

data obtained in real world and yi = g(xi ) ∈ R
m, m < n as

the corresponding point of xi in the latent space. g(·) is a
transformation. li = k means that the i th point belongs to the
kth class, k = 1 . . . C . In Shannon’s information theory, the
mutual information of latent points and labels, i.e., I (L, Y),
can be expressed in the following form,

I (L, Y) = H (L)− H (L|Y)

= −
∫

p(l) log p(l)dl +
∫∫

p(l, y) log p(l|y)dydl

(1)

where H (·) denotes the entropy.
As shown in (1), the mutual information can be expanded

as the summation of two entropy terms. The conditional
entropy H (L|Y) reveals the total uncertainty of labels by
observing the latent features. Therefore, it should be mini-
mized. As indicated in [23] and [26], this conditional entropy
implicitly represents the margins between different classes.
A small conditional entropy corresponds to a large margin.
Besides, the entropy H (L) encodes the label distribution
which is always maximized in semi-supervised learning to
avoid label bias on some specific classes.

The estimation of information theoretic quantities depends
on probability density function (PDF) of transformed data and
labels. In the RIT model, we assume that the data in the
latent space can be well separated by a probabilistic classifier.
In machine learning, one extensively used probabilistic clas-
sifier is the multinomial logistic regression (MNL). Without
the loss of generality, in this paper, we exploit the MNL in
the RIT formulation. We assume there are C classes in total
and get C pairs of θ j = (w j , b j ) in the parameter space of
the MNL. It is worth noting here that l is not the supervised
label. In fact, it is the label assigned by the MNL in the latent
space. With the MNL, the conditional probability p(li = k|yi )
is explicitly defined,

pik = p(li = k|yi ) =
exp(wT

k yi + bk)

C∑
j=1

exp(wT
j yi + b j )

. (2)

According to (1), it is obvious that this kind of implicit
labels will be integrated out in the calculation of the mutual
information. Of course, there is another kind of supervised
labels, i.e., ls , which are explicitly provided by the user.
Accordingly, we treat data as two kinds regarding whether
their labels are explicitly given or not. For training, we assume
there are N feature vectors in total, i.e. Y = {y1, y2 . . . yN }.
Among these N data points, we get t supervised features, i.e.
Ys = {ys

1, ys
2 . . . ys

t } ⊂ S with their labels explicitly provided
as Ls = {ls

1, ls
2 . . . ls

t }.
We define X ∈ R

n×N are the original feature and
Y ∈ R

m×N , m < n are the points in the latent space.
g(·) is the mapping or data transformation function. In this
part, we consider the most widely used linear transformation,
i.e., Y = �X,� ∈ R

m×n . More general data transfor-
mations will be discussed in Section IV. Accordingly, we
give the general form of the robust information theoretic
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embedding (RIT) model,

min − I (L, Y)− λC(Ls, Ys)

s.t . Y = g(X) (3)

In the objective function of (3), the first term is the mutual
information of all the data no matter whether they are super-
vised or not. The second term C(Ls, Ys) is the regularization
by penalizing the loss of the probabilistic classifier which only
involves supervised data and their labels. We will discuss its
expression and effectiveness in the next subsection in Eq.5. Till
now, why our RIT model naturally handles semi-supervised
embedding tasks is self-evidently. It utilizes all the samples
(both supervised or not) in the mutual information term and
the supervised information are further penalized in the second
term.

B. RIT With Noisy Labels

RIT is meanwhile very robust to the noises in the supervised
labels. This desired advantage owes to two points. Firstly,
the objective of RIT does not only over-fit the losses of
supervised data. In addition to the logit loss C(·) in (3),
RIT simultaneously seeks for a balance to maximize the
mutual information term, which does not rely on the super-
vised label. It is conceivable that an over-fitted logistic
machine may achieve a good score on the loss of C(Ls , Ys).
However, such a bad logistic classifier learned from noisy
labels may not achieve a good score on the mutual infor-
mation. Therefore, the mutual information term alleviates the
disturbance of the noisy labels.

Secondly, the MNL itself could also contribute to allevi-
ating the noisy labels. In detail, p(ls

i |xs
i ) exactly reveals the

uncertainty of the supervised labels by observing the features.
It is conceivable that a well trained MNL could not fit all
the data perfectly. Particularly, it hardly fits the outliers in
the training set. Therefore, the noisy labeled data generally
exhibit small conditional probability implying that they cannot
be well explained by the current MNL. Accordingly, following
the idea in [27], we can define the weight φi = p(ls

i |xi ) for the
i th supervised sample and incorporate this quantity to design
a weighted MNL,

L(Ls, Ys) =
t∏

i=1

(pik)
φi , (4)

The function L is not a likelihood in the usual sense; but
it has much general meaning to alleviate the disturbances
of outliers in the training set. With the weighted likelihood,
we get its log-likelihood expression and the cost function is
subject to the following equation, i.e.

C(Ls, Ys) =
t∑

i=1

Ci =
t∑

i=1

φi log pik . (5)

From the log-likelihood, obviously, when φi is small, the i th

sample contributes less to the global cost. Ci is the loss that
the i th supervised sample contributed to the global objective.
On the contrary, a large weight enhances the effectiveness of
the i th sample to the optimization. Therefore, to make a robust

Fig. 2. The embedding results and the conditional probability for supervised
data in different iterations of RIT optimization for the toy demo discussed
in Figure 1. In each subfigure, the histograms report 1 − p(lsi |xs

i ) of each
labeled point which are arranged in a decreasing order. The red bars indicate
the noisy supervised data. Blue bars denote the samples whose labels are
correctly supervised.

embedding, it is plausible if we can denote small weights to
the samples whose labels are wrongly supervised. Fortunately,
within the probabilistic framework, it is possible to define
such kind of weight by the conditional probability returned
by the MNL.

The weight is updated along with the processing of the
whole RIT optimizations. Till now, the cost C(Ls, Ys) exactly
corresponds to the general losses used in weighed logistic
regression. In the optimization, these weights are dynamically
updated and the whole optimization is cast to a sequence of
reweighted programming. The details of the optimization and
the weight updating procedures are provided in Fig.2.

From Fig.2, it is obvious that with the processing of the
iterations, the noisy labeled data are automatically identified
by our algorithm (see the red bars). According to Eq.4, it is
apparent that these noisy data may contribute little to fit the
logistic regression and their effectiveness to discrimination are
only represented in the mutual information term that does not
rely on the supervised labels. However, our algorithm cannot
perfectly alleviate all the disturbances of noisy labels, it is
found from the last subfigure in Fig.2 that one noisy point
(indicated by the arrow) is still embedded to a wrong place.

C. RIT Subspace Model

We show the optimization of the RIT model in this part.

With pik defined in (2) and pk = 1
N

N∑
i=1

pik , we give the

empirically estimation of the mutual information term that,

I (L, Y) = 1

N

N∑
i=1

Ii = 1

N

N∑
i=1

C∑
k=1

{pik[log pk − log pik]}

(6)
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Fig. 3. The schematic illustration of the deep RIT (DRIT) model by
exploiting deep neural network as the data transformation function g(·). In the
classification layer (green layer) of the DNN, the classifier assigns different
points to its corresponding category by maximizing the information theoretic
term in (3) as the learning objective.

The term Ii defines the loss that the i th sample contributed
to the mutual information [23]. For term C(·), we choose
it to be the log-weighed-likelihood of the losses of MNL.
As discussed previously, the optimization involves two vari-
ables, i.e. the data transformation � and the MNL parameters
θi = (wi , bi ), i = 1..C .

The gradient of the two terms with respect to �, w and b
can all be derived through chain rule. For example, ∂ I

∂� =
1
N

N∑
i=1

C∑
k=1
[log pk

pik
+ 1] ∂ pik

∂� and ∂C
∂� = 1

N

N∑
i=1

1
pilsi

∂ pilsi
∂� . This

chain rule is also applied to the derivatives for w and b. The
only modification is to change the partial derivative of � to
be the partial derivatives with w and b, respectively.

After getting the derivatives, the whole RIT optimiza-
tion is solved in an alternating framework. We denote
the objective in (3) as f (X, Ls |�, θ,�), where �
is the weight matrix. The updating rule is provided
by θ k+1 = arg min f (X, Ls |�k, θ,�k) and �k+1 =
arg min f (X, Ls |�, θ k,�k). Both the updating of � and θ
depend on the gradient descent method and we use the
L-BFGS quasi-Newton optimization algorithm1 to get a fast
and robust convergence.

IV. RIT EXTENSIONS

In the previous part, the general paradigm of RIT sub-
space model with linear transformation has been discussed.
In fact, RIT is a robust information theoretic feature learning
framework that works friendly with many kinds of data trans-
formation functions. As extensions, we will introduce other
two types of prevalent data transformation strategies into the
RIT framework from the perspectives of deep learning and
structured sparse learning.

A. Deep RIT

In this part, we show how to incorporate deep learning
concepts into RIT to improve the performances of feature
learning. A schematic summarization of the deep RIT (DRIT)
model has been provided in Fig.3 which is mainly composed
of two parts of feature transformation (blue layers) and task-
driven learning parts (green layer).

1We used the public optimization package “minFunc” at
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html.

At a glance, the deep neural network (DNN) plays the role
of a mapping function g(·) in Eq.3 that transforms the input
data/image (yellow layer X) into a high-level representation Y.
We follow the general principle in the field to define the
activations of the neural network. In details, the j th node of
the (l)th layer is connected to the nodes on the (l− 1)th layer
with parameters θ(l j ) = {w(l j ), b(l j )}, i.e.

o(l j ) = γ (a(l j )), a(l j ) = w(l j )o(l−1) + b(l j ), (7)

where γ (·) is a nonlinear mapping; w(l j ) and b(l j ) are the
weights and bias. The number of hidden layers of this deep
representation part can be large. In the image analysis tasks,
the dimensions of input data are very high and the convolu-
tional operations are always used in the first coupe of layers of
the DNN. In this part, we do not prefer to specify the detailed
DNN structure because DRIT works well with many types of
deep configurations. The specific DNN setting that is used in
this work for the image categorization will be discussed in the
corresponding experimental part.

We remark on the differences between DNN transformation
and the linear transformation in the RIT subspace model.
In the previous linear model, only a mapping matrix � is
optimized while this deep transformation involves millions of
hidden parameters. Such a large amount of parameters allow
hierarchical transformations that could potentially increase
the chances to get a better representation Y on the last
representation layer. On the other hand, deep training also
imposes great computational burdens and requires tons of
training samples.

After obtaining the latent representation Y of the DNN, a
multinomial logistic regression layer (green layer) is connected
to it for data classification. In Fig.3, for simplicity, only three
classes and their corresponding classifiers f1, . . . f3 are shown.
In typical DNN training, the objective function always directly
minimizes the logistic loss to make minimal prediction error
on the training set. In the DRIT model, we further utilize
the information theoretic quantity defined in (3) to reduce
the uncertainties in the supervised labels. Such objective
generalizes all the nice properties of the RIT learning to this
deep learning framework. More importantly, similar as the
methods in Section III-B, DRIT also exhibits the plausible
mechanism to detect wrongly supervised labels in the training
set which will be experimentally discussed later.

While DRIT exploits the RIT as the learning objective, typ-
ical back-propagation (BP) algorithm [28] still easily applies
to solve it. To note, we have denoted two terms, i.e. C(·) and
I (·) in the RIT objective. These two terms should be simul-
taneously considered in the BP process to adjust parameters
in DNN. In general, the gradient for the parameter in DNN
can be determined by the following additive formulation.

∂C

∂θ(li)
=

∑
i
δ(i ∈ S) (

∂Ci

∂o(l j )
i︸ ︷︷ ︸

B P

)
∂o(l j )

i

∂a(l j )
i

∂a(l j )
i

∂θ(l j )

+
∑

i
(

∂ Ii

∂o(l j )
i︸ ︷︷ ︸

B P

)
∂o(l j )

i

∂a(l j )
i

∂a(l j )
i

∂θ(l j )
. (8)
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The above gradient for parameter θ(l j ) is easily verified
according to the chain rule. The terms in the brackets come
from error back propagation (BP) and the remaining terms
out of the brackets are easily calculated with the matrix-form
derivations. In the above formulation, we have used S to
denote the set of supervised data points and δ(·) is the indicator
function which is 1 iff. i ∈ S and 0 otherwise. Ii and Ci have
been defined in (1) and (5), respectively. In practical training,
we adopt the stochastic gradient descent strategy to update the
parameters with parallel computing [29].

B. Structured Sparse RIT

In many practical problems, the data themselves exhibit
certain structure [30]. In this part, we will show how to effec-
tively exploits this feature structure information to improve
the performance of RIT. From a general view, the linear RIT
model is comparable with a regression problem with each
dimension in the latent space sharing its own regression vector.
To support this claim, we recall the linear transformation in
the RIT model that for any point xi ∈ R

n , there exists a
mapping yi = �xi . We know that yi = [yi1, yi2 . . . yim ] ∈ R

m .
Consequently, it is straightforward to get a regression-type
formulation that yiu = ωuxi ,∀i = 1 . . . N where ωu ∈ R

1×n

is the uth row of �, i.e. � = [ωT
1 . . . ωT

u . . . ωT
m ]T.

From the discussions aforementioned, it is apparent that all
the attributes in the feature vector x will contribute to the final
embedding. In statistic, it has been widely investigated that
such a dense regression is not the optimal one in most cases.
In machine learning, one prevalent approach is to place sparse
priors on the regression parameter to further improve the
prediction accuracy of the model. Intuitively, sparse learning
assumes that only a portion of factors in the original feature
vector contribute to the learning process. The incorporation
of the sparse norms facilitate automatic feature selection and
alleviate the over-fitting problem for training data to a large
extend.

However, in many cases, only constraining the sparseness of
the factors does not seem appropriate because the considered
factors are not only expected to be sparse but also to have a
certain structure [18]. Therefore, structured sparsity-inducing
norms are now drawing more and more attentions in the com-
munity of machine learning, e.g. in grouped lasso. Therefore,
it is nontrivial to incorporate structured regularization into the
RIT model for the sake of better data interpretation.

Before introducing structured sparse RIT (SS-RIT), we will
first introduce some sparse norms that play very critical roles
in sparse learning. First, we define the general �p norm for

a vector a ∈ R
r as ‖a‖p = (

r∑
i
|ai |p)

1
p . ‖a‖0 denotes the

�0 norm that counts the number of non-zero elements in a.
However, �0 norm is discrete and is analytically intractable.
Therefore, its convex envelope, i.e. �1 norm is extensively
used as a convex surrogate for sparse learning [31]. Based on
the �1 norm, we will introduce the �1/�2 norm for structured
sparse learning.

For the ease of explanation, we divide r dimensions of a
into |G| overlapping groups, i.e. G = 1, . . . |G|, which implies
that one attribute ak can be assigned to different groups.

We define dG
j > 0 as the weight for the j th variable in the Gth

group. dG
j = 0 means that the j th attribute is excluded from

the Gth group. Accordingly, the structured sparsity inducing
norm [32] can be defined as,

�G(a) =
∑
G∈G

⎧⎨
⎩

∑
j∈G

(dG
j )

2|a j |2
⎫⎬
⎭ =

∑
G∈G
‖dG ◦ a‖2, (9)

The operator ◦ is the component-wise product. The norm in (9)
is called �1/�2 norm because it encourages sparse selections
at the group level and, in each group, the variables are densely
penalized by a �2 norm.

Moreover, as indicated in [18], �1 norm is a specific case
of (9) when G is the set of all singletons and with all the
weights setting to 1. Accordingly, we present the general
formulation of the structured sparse RIT model (SS-RIT)
in (10) and the sparse RIT with �1 regularization is only a
specific case of SS-RIT.

min f (X, Ls |�, θ)+ μ

m∑
u=1

�G(ωu) (10)

In the above formulation, the first term is the loss of the
RIT model in (3) and the second term is the structured sparse
regularization of the projecting vector. ωu is the uth row of
the linear transformation �. With such a norm, it is apparent
that each dimension yu in the latent space is only associated
with a number of attributes of x in the selected groups.

The optimization of SS-RIT is almost the same as the the
solutions to the RIT model which depends on the alternation
between � and θ . For the logistic parameters, they are
irrelative to the added structured norms and thus the updating
rule for RIT still applies to it without any change. However,
in SS-RIT, the gradient of � now involves an extra term, ı.e.
�G(ωu). To handle this structured sparsity-inducing norm, we
follow the work in [18] and [32] to introduce the variational
variable η and solve the SS-RIT in a reweighted manner.

As following the result in [32], we have the following
lemma,

Lemma 1: For any matrix x, its �1 norm is equivalent to
the following problem with a variational variable z,

2 ‖ x ‖1= min
z∈Rp

p∑
z=1

x2
j

zj
+ ‖ z ‖1, (11)

whose minimum is uniquely obtained for z j = |x j |.
Following (11), by defining ηG

u as the variational variable,
2

∑m
u=1 �G(ωu) can be reformulated into the following vari-

ational form,

2
m∑

u=1

�G(ωu) = min
(ηG

u )G∈G

m∑
u=1

[‖ (ηG
u )G∈G ‖1

+
∑
G∈G
‖ ωu ◦ dG ‖22 (ηG

u )−1], (12)

By merging the variational variable and the �2 norm together,
Eq. 12 can be rewritten in turn as

min
(ηG

u )G∈G

m∑
u=1

ωu Diag(ζ )ωT
u + ‖ (ηG

u )G∈G ‖1,
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THE CLASSIFICATION RESULTS ON DIFFERENT DATASETS WITH DIFFERENT DATA EMBEDDING ALGORITHMS AND CLASSIFIERS (ACCURACY± STD %)

where the j th element in vector ζ is ζ t
j =

∑
G∈G(dG

j )2(ηG
u )−1,

j = 1 . . . n. Diag(·) is an operation to write a vector into a
diagonal matrix. Till now, the SS-RIT optimization in (10) is
subject to the following variational optimization,

min f (X, Ls |�, θ)

+ μ

2

{ m∑
u=1

ωu Diag(ζ t )ωT
u + ‖ (ηG

u )G∈G ‖1
}
. (13)

The problem in (13) is not jointly convex and led them-
selves well to simple alternating optimization scheme between
�,(ηG

u )G∈G and θ .
The updating rules of � and θ is trivial following the

gradient descend method. The updating rules of of the vari-
ational variable {(ηG

u )G∈G} is given in lemma 1. In practice,
{(ηG

u )G∈G} is provided by

{(ηG
u )G∈G}k+1 ← max{‖ωk

u ◦ dG‖2, ε}, (14)

where ε � 1 to avoiding numerical instability near zero.
ωk

u ∈ �k is the uth row of the optimal �k obtained in
the kth iteration. Till now, the whole SS-RIT optimiza-
tion can be solved following the steps of alternating opti-
mization. The whole optimization is regarded as converged

when
‖�k+1−�k‖2F
‖�k‖2F

< 10−3.

V. RIT FOR IMAGE CATEGORIZATION

A. RIT Subspace Model

In this part, we investigate the performances of RIT on three
benchmark image datasets including Yale-B face dataset [33],
fifteen-scene dataset [34] and the COIL-100 dataset [35].
In Yale-B face dataset, we simply use the cropped images
in [33] and [36] and resize them to 32 × 32 pixels. This
dataset now has 38 individuals and around 64 near frontal
images under different illuminations per individual. Fifteen
scene dataset contains images from fifteen categories including
both indoor and outdoor pictures. The COIL dataset contains
the images of 100 objects from multi-views [35].

In the Yale-B dataset, we use the gray-scale pixel values
on the raw face images to generate the feature vector. For the
scene and object dataset, we follow the bag-of-feature method
to extract visual features. In a nutshell, to describe an image,
we use a grid-based method to extract the dense SIFT features.

The dense SIIF features [37] are extracted on 16 × 16 pixel
patches sampled every 8 pixels. To generate features for fifteen
scene and COIL dataset, the local sift features are assigned to a
codebook with 1024 codewords by the kernel assignment [38]
and lead to a final feature vector of R

1024. For multi-view
models, we also considered the gist feature [39] as another
view.

For comparison purpose, we pit RIT against many prevalent
subspace models including statistic methods (e.g. PCA [40],
LDA [5] , CCA [7]), DLA [12] and GMA [13] with LDA and
MFA (termed as GMLDA and GMMFA), graph-based meth-
ods (e.g. MFA [9]), information theoretic learning (MIM [25])
and task driven sparse coding (TSC) with logistic regression
as the objective [19]. For the ease of computational efficiency,
before discriminative embedding, the original large feature
vectors are pre-processed by PCA to a low dimensional sub-
space where 90% energy are preserved. In the implementation
of RIT model, we fit λ = 0.1 and the learning procedures
are regarded as converged when the changes of the objective
is less than 10−4. For multiple class categorization task, we
follow the idea in [19] to train the model with the one-versus-
all strategy. The experimental validations are divided into three
parts, i.e. supervised embedding, semi-supervised embedding
and embedding with noisy labels.

In the first test, we investigate the performance of RIT in a
definitely supervised fashion. For training purpose, 30 samples
per class in Yale-B dataset, 100 samples in each class of fifteen
scene dataset and 40 images in COIL dataset are randomly
selected as training samples. The rest images are used for
testing and the experiments are repeated for 10 times. After
data embedding, for data classification, we test three classi-
fiers including Nearest Neighbors Classifier, Support Vector
Machine (SVM) and logistic regression. The best classification
results of data embedding methods with different classifiers
are reported in Table I. In Table I, the first row reports
the classification accuracies on raw data as a comparison
baseline. It is interesting to note, although less data dimensions
are used in the latent space, the classification accuracies are
even improved. This improvement owes to feature learning
mechanism of discriminative data embedding [7], [25].

We consider the performances of RIT model to conduct
semi-supervised discriminative embedding. As stated in
Section III, RIT naturally embraces the unlabeled samples
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Fig. 4. The classification accuracy of different data embedding method with noisy labels. (a) Yale-B. (b) Fifteen Scene. (c) COIL-100.

TABLE II

THE CLASSIFICATION RESULTS OF SEMI-SUPERVISED

DISCRIMINATIVE EMBEDDING (ACCURACY± STD%)

into the model with the mutual information maximization. For
comparisons, we compare RIT with other semi-supervised
discriminative embedding methods. The first competitor is
semi-supervised discriminant analysis (SDA) [6] that resem-
bles LDA but places a Laplacian term to encourage unlabeled
points staying very close to the similar labeled points. The
MIM model is a fully supervised model and we propose two
possible ways to extend MIM to a semi-supervised version.
First, we can initialize nonconvex MIM with the optimal
projections learned by SDA (SDA+MIM). Besides, it is also
possible to extend MIM to a semi-supervised version by
incorporating a Laplacian term (LapMIM). Task driven sparse
coding (TSC) [19] is straight-forward to be extended to the
semi-supervised by using the labeled data in the classifier
and keeping all the unlabeled data in the reconstruction term.
DLA can also incorporate the unlabeled samples in the align-
ment stage [12] and lead to the semi-supervised DLA (SDLA).

The results of semi-supervised learning results are reported
in Table II by using the same feature and training samples
as in Table I. The classifier used in this test is the Logistic
Regression. From the results, it is interesting to find the per-
formances of discriminative embedding are further improved
with some unlabeled points. By comparing the results with the
supervised embedding results in Table I, it is noted that semi-
supervised-based embedding results exhibit smaller standard
deviation.

From the experiments presented above, we find that among
all the semi-supervised embedding methods, RIT achieves
the best performances. According to previous discussions,
other semi-supervised methods generally utilize a Laplacian
term to regularize the unlabeled samples which shed no light
on the discriminative side. RIT model directly enhances the

discrimination of unsupervised points by optimizing the
mutual information. Moreover, another significant advantage
of RIT model is its flexibility in handling both supervised
and semi-supervised embedding tasks. Other discriminative
embedding models almost need extra modifications, e.g.
adding another term into the objective, to adjust themselves to
the semi-supervised version. Fortunately, RIT does not require
any modifications in the model which is only determined by
the training data type (supervised or semi-supervised) fed to it.

Consequently, we further consider a very challenging task
that noisy labels are involved in the discriminative learning.
To conduct the experiments, we randomly select a number of
samples from training set and their labels are wrongly denoted.
For each noisy level, the experiments are repeated for 10 times
and the average classification accuracy on different datasets
are reported in Fig.4. We compare the RIT model with other
benchmark data embedding and representation methods with
the same training samples and noisy labels.

From the results, obviously, the performances of different
data embedding methods gradually drop along with the noisy
labels rate increasing. Fortunately, our RIT model is the most
stable one to the noisy labels. Meanwhile, TSC achieves
relatively good performances on this test. This is because
TSC does not only address the discriminative objective and
meanwhile considers optimal signal reconstruction. GMA also
attains comparable results when the noisy label rate is small.
Its performance further decreases along with the increases
of noisy label number. For other discriminative embedding
methods, e.g. LDA,CCA and MIM, their performances drop
significantly with the increases of noisy labels. From the afore-
mentioned discussions, we know RIT is the most robust one
when compared to other discriminative embedding methods.

B. Deep RIT for Image Categorization

In this part, we evaluate the performances of DRIT model
on three datasets. The first two are the fifteen scene and
COIL-100 datasets which have been introduced and discussed
in the previous part. In addition, a large-scale dataset, i.e.
ImageNet [4] will also be used here. ImageNet task requires
categorizing more than 100k testing images into 1000 classes
which is quite challenging.

We choose the famous convolutional deep neural net-
work (CDNN) proposed in [41] as deep learning part because
it has been widely regarded as the benchmark configuration in
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TABLE III

THE IMAGE CATEGORIZATION ACCURACY VIA DEEP LEARNING

the field. In details, CDNN is composed of eight hidden layers:
5 convolutional layers (with pooling and ReLU [42] nonlinear
transformation) and 3 fully connected layers. CDNN directly
use the logistic regression as the final layer while the proposed
DRIT makes use of RIT function as the objective function.

We follow a standard protocol [29], [41] to train the DNN
by normalizing all the input images into the size of 224×224.
The mean value on each RGB channel is subtracted from the
original image. The DNN here involves more than 60 million
hidden parameters to be learned from the data that requires
a huge amount of training data. ImageNet dataset provides
a sufficient amount of 1.2 million training images for deep
learning. However, the fifteen scene and COIL datasets only
contain limited number of training samples. Accordingly, on
these two datasets, we follow the same idea in [43] to use
the ImageNet training results to initialize the DNN. Then, the
training images from these two datasets are used to fine-tune
the parameters via back propagation. In practice, a random set
of 100 and 40 images in each class of fifteen scene and COIL
datasets are selected as the training samples. Both the average
accuracy and standard deviations on these two datasets are
reported in Table.III. ImageNet provides the training/testing
list and only the accuracy on it is recorded.

We report the image categorization results of different deep
learning methods in Table.III. We further consider the DNN
with Hinge loss (HDNN) in the task layer. Hinge loss is
also known as max margin loss which explicitly penalizes the
margins of different classes. In addition to the categorization
results with the logistic regression, the SVM classifier is
also tested here. For SVM method, the values on the last
representation hidden layer (before the categorization layer)
are used to train a linear SVM classifier. From the results, it is
apparent that deep learning strategy significantly outperforms
the linear methods in Table I. We have also tried the bag-
of-feature methods (with 1000 codewords) on the ImageNet
dataset and then classify them with linear RIT. Unfortunately,
the accuracy is only around 26% which is far away from
the deep learning results implying only deep learning could
make reasonable predictions on this challenging ImageNet
task. This is reasonable because DL is built upon millions of
parameters while linear subspace model is only configured in
a shallow framework. When comparing different deep learning
results in Table III, the advantages of DRIT model are self-
evident. DRIT improves the accuracy for 1.2 points than
typical CDNN on the ImageNet dataset. The improvements
are also verified from the results with the SVM classifier
where DRIT wins CDNN for 1.4% on ImageNet. The similar
experimental findings are also made on the other two datasets.

Fig. 5. The categorization accuracy of deep learning methods with different
noisy label rates.

The previous experiments on deep learning verify that
the RIT is a better objective than logistic and hinge losses
for general deep learning tasks. The advantages of RIT can
be further highlighted on its robustness in reducing label
ambiguity as discussed in Section III-B. In this part, we further
investigate DRIT’s performances in treating label noises. We
randomly select p% of training samples and denote definitely
wrong labels to them. These wrongly supervised samples are
mixed with ground truth training samples to conduct DNN
learning. The noisy label rates are varied from 5% to 20%
and, at each noisy rate level, the experiments are repeated
for 10 times with the average accuracies reported in Fig.5.
From the deep learning investigations in Table III, it is found
that SVM classifier achieves similar performances as logistic
regression. Accordingly, in this part, only the deep learning
results with logistic classifier are reported. By analyzing the
results, we have observed the curves of DRIT suffer less drop
than CDNN and HDNN. The results suggest that DRIT could
cope with the noises in the training set much better leading
to a relatively reliable curve with increases of the noisy label
rates. The mechanism why RIT could alleviate this kind of
noisy labels has been discussed in Section III-B.

Till now, two implementations of RIT with linear trans-
formation and deep transformation have been discussed and
verified. From experimental comparison, it is concluded that
deep RIT could always achieve much higher classification
accuracy than the linear RIT model. However, the nature of
DNN training requires sufficient training samples and heavy
computational complexity. Therefore, for some challenging
tasks, e.g. ImageNet, DRIT is strongly recommended due to its
advancements in performances. On some small-scale dataset,
e.g. COIL-100, the flexible linear RIT itself could already
achieve very sound performances. Meanwhile, we have noticed
that RIT and DRIT both exhibits the robustness in treating
noisy labels in the training set. Both of them performs more
reliable than other linear and deep approaches with noisy
labels.

C. SS-RIT for Brain MRI Segmentation

The discussions in the last section successful verify that
RIT model is robust to label uncertainty. In many practical
image analysis tasks, feature uncertainty is another critical
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Fig. 6. Segmentation results of one brain MRI from the IBSR dataset.

issue that should be comprehensively considered. In this part,
the discussions are extended on a practical task, i.e. MRI
segmentation, where both the label and feature uncertainties
simultaneously happen. In general, MRI segmentation is an
important clinical task [44], that requires assigning brain
tissues into white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF) [44].

By analyzing the problem, the challenges mainly stem from
two effects, i.e. partial volume and bias field effects [45].
In [46], it is revealed that partial volume effect and bias
filed effect may respectively lead to the label uncertainty
and feature uncertainty. The label uncertainty issue can be
potentially well addressed by the RIT model whose robustness
in conquering label ambiguity has been verified in the previous
part. The remaining challenge here is to overcome the feature
uncertainty. To cope with the bias effect, in the paper, we
introduce a new strategy to conducting MRI segmentation on
the super-voxel level. In details, the homogenous local regions
on the brain tissue are grouped together into a super-voxel
according to the method in [47]. An instance of super-voxels-
level segmentation generated by the SLIC [47] algorithm has
been provided in Fig.6.

Then, on each super-voxel, multiple feature descriptors can
be generated from different views that provides comprehensive
quantitative summarizations of the coherent structure on the
tissue. In this paper, we divide the visual descriptors into
four groups as intensity, texture, SIFT and HOG features.
The intensity feature is extracted by computing the inten-
sity histogram with 64 bin. Local binary pattern [48] is
exploited as a texture descriptor and can be summarized in
a 36-dimensional feature vector. SIFT [49] is calculated on
each super-voxel and leads to a vector in 128 dimensions.
Finally, 31-dimension histogram of oriented gradient [50]

is extracted. In total, a 259-dimensional feature vector is
generated for each super-voxel.

The feature extraction strategy on super-voxel depicts the
tissue content by descriptors from multiple views, avoiding the
description biases from a single view. However, a natural ques-
tion consequently raised here: which type of visual descriptors
and their combinations are most suitable to the brain segmen-
tation tasks? The structured sparse norm discussed in Section
IV-B well solves this issue by enabling group-level fea-
ture selection/combination in subspace. Different from typical
�1-norm-based sparse feature learning, structured sparse norm
pays particular attentions to the physical structure of each
feature group. It encourages the sparsity only at the group level
avoiding destroying the original structure in a feature group.
It thus makes more reasonable high-level summarizations of
the original data [18] by keeping their inherent information
content.

In summary, SS-RIT is a plausible paradigm in coping
with the challenging brain MRI segmentation. First, the label
uncertainty from partial volume effects is solved by the RIT
model. Moreover, after combining the structured sparse norm
into RIT, the SS-RIT naturally exhibits the group-level feature
learning mechanism when generating the projection matrix.
Finally, SS-RIT simultaneously performs data embedding and
classification in the joint framework, which is flexible and
effective in enhancing the discriminative structure of the data
points in the latent space.

The experiments were conducted on two widely
used datasets from Internet Brain Segmentation
Repository (IBSR) [51] and BrainWeb database [52].
The IBSR dataset consists 18 real images with a size of
256×256×128 voxels. BrainWeb dataset consists of 18 images
with a size of 181×217×181 voxels. All of these images
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PERFORMANCE OF DIFFERENT SEGMENTATION METHODS
ON IBSR AND BRAINWEB DATASETS

are provided with ground truth segmentations for quantitative
evaluations.

We exploit the structured-sparse RIT here to make predic-
tions on the super-voxel level. To note, RIT is implemented on
the semi-supervised version and, on each image, a random set
of 150 super-voxels on each MRI are labeled with their ground
truth label. In medical image segmentations, rather than the
prediction accuracy, the dice similarity coefficients (DSC)
is instead used as a criteria to assay a method’s perfor-
mance [53].2

For comparison purpose, the SS-RIT is pit against
other leading methods for MRI segmentation including
brain tissue segmentation algorithms in FMRIB
Software Library (FSL) [54] and Statistical Parametric
Mapping 8 (SPM8) package [55]. These two tools perform
voxel-vise segmentation and have been widely regarded as
benchmark methods in the neuroimaging community. Further,
on the super-voxel level, the SS-RIT model is compared with
other subspace models including MIM and TSC. MIM is
also an information theoretic embedding method and TSC
achieves much robust results according to previous tests.
Finally, the structured sparse model is compared with RIT and
Information Theoretic Discriminative Segmentation (ITDS)
[46]. The major differences between ITDS and SS-RIT is the
former exploits the �1 sparse norm for feature selection in
the original space while the later conducts group-level feature
learning in subspaces.

The segmentation results are visualized in Fig.6. Each panel
illustrates the brain tissue segmentation result of the same
brain volume selected from the IBSR dataset. The color of
red, green and blue voxels represent the tissues of CSF, GM
and WM, respectively. By comparing the segmentations to
the ground truth, the advantage of SS-RIT segmentation over
other six approaches is apparent. In particular, the SS-RIT
segmentation shows particularly better delineations of CSF and
GM tissues.

The quantitative evaluations on two datasets are reported
in Table IV. A higher value of DSC represents a better
correspondence to the ground truth. From the results, it is
noted that the super-voxel level segmentations (last five rows
in Table IV.) are much better than the voxel level segmen-
tations (FSL and SPM8). Among all the subspace segmen-

2DSC is calculated from true positive (TP), false positive (FP) and false

negative (FN) rates as, DSC = 2×T P
2×T P+F P+F N .

tation methods, the performance of RIT is much robust than
MIM and TSC. This is because RIT conquers the uncertainties
in the supervised labels and thus better captures the coherent
discriminative structures in MRI data.

Further, we will discuss the advantages of exploiting
structured-sparse norm which can be verified by comparing
SS-RIT with RIT (no feature selection) and ITDS (sparse
selection). Within the same experimental setting, learning
group-level feature transformations (structured subspace learn-
ing) generally outperforms other two methods on DSC values.
In addition, SS-RIT also achieves the lowest standard deviation
for three types of tissues than others. This serves as an evi-
dence to demonstrate that structured sparse learning does not
only improve the accuracy but also enhances the robustness.

VI. CONCLUSION

This work introduces an information theoretic method that
successfully alleviates both label and feature uncertainties
in general data representation tasks. The main advantages
of the proposed method are represented from its flexibility
and robustness. In the view of flexibility, RIT model works
friendly with different types of feature transformation func-
tions to conduct information theoretic learning. In this paper,
we have implemented linear RIT, deep RIT and structured-
sparse RIT models to address different image analysis tasks.
The RIT framework generally improves other similar methods
in the field. In the view of robustness, RIT is proven to
be much effective to reduce the ambiguities in the training
samples. Both the linear and deep RIT achieve much reliable
performances in spite of label noises in the training samples.
Moreover, its structured extension well addresses the partial
volume effect (label uncertainty) and bias field effect (feature
uncertainty) in MRI of brain tissue and thus achieves much
better segmentation results than other state-of-the-arts.
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